Wavelet analysis of the multivariate fractional Brownian motion

نویسندگان

  • Jean-François Coeurjolly
  • Pierre-Olivier Amblard
  • Sophie Achard
چکیده

The work developed in the paper concerns the multivariate fractional Brownian motion (mfBm) viewed through the lens of the wavelet transform. After recalling some basic properties on the mfBm, we calculate the correlation structure of its wavelet transform. We particularly study the asymptotic behavior of the correlation, showing that if the analyzing wavelet has a sufficient number of null first order moments, the decomposition eliminates any possible long-range (inter)dependence. The cross-spectral density is also considered in a second part. Its existence is proved and its evaluation is performed using a von Bahr-Essen like representation of the function sign(t)|t|. The behavior of the cross-spectral density of the wavelet field at the zero frequency is also developed and confirms the results provided by the asymptotic analysis of the correlation.

منابع مشابه

Lacunary Fractional Brownian Motion

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

متن کامل

Multiscale representations: fractals, self-similar random processes and wavelets

2 Principles 4 2.1 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Definition and history . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Hölder exponent and singularity spectrum . . . . . . . . . . . . . 6 2.2 Self-similar random processes . . . . . . . . . . . . . . ....

متن کامل

Wavelet entropy and fractional Brownian motion time series

We study the functional link between the Hurst parameter and the normalized total wavelet entropy when analyzing fractional Brownian motion (fBm) time series—these series are synthetically generated. Both quantifiers are mainly used to identify fractional Brownian motion processes [L. Zunino, D.G. Pérez, M. Garavaglia, O.A. Rosso, Characterization of laser propagation through turbulent media by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017